设为首页收藏本站

大数据论坛

 找回密码
 立即注册

QQ登录

只需一步,快速开始

搜索
查看: 301|回复: 1

知识图谱构建中的知识融合部分介绍

[复制链接]
发表于 2019-10-14 18:32:01 | 显示全部楼层 |阅读模式

通过信息抽取,我们就从原始的非结构化和半结构化数据中获取到了实体、关系以及实体的属性信息。
如果我们将接下来的过程比喻成拼图的话,那么这些信息就是拼图碎片,散乱无章,甚至还有从其他拼图里跑来的碎片、本身就是用来干扰我们拼图的错误碎片。
也就是说:
拼图碎片(信息)之间的关系是扁平化的,缺乏层次性和逻辑性;
拼图(知识)中还存在大量冗杂和错误的拼图碎片(信息)
那么如何解决这一问题,就是在知识融合这一步里我们需要做的了。
知识融合包括两部分内容:实体链接,知识合并。
实体链接
实体链接(entity linking)是指对于从文本中抽取得到的实体对象,将其链接到知识库中对应的正确实体对象的操作。
其基本思想是首先根据给定的实体指称项,从知识库中选出一组候选实体对象,然后通过相似度计算将指称项链接到正确的实体对象。
研究历史:
仅关注如何将从文本中抽取到的实体链接到知识库中,忽视了位于同一文档的实体间存在的语义联系。
开始关注利用实体的共现关系,同时将多个实体链接到知识库中。即集成实体链接(collective entity linking)
实体链接的流程:
从文本中通过实体抽取得到实体指称项;
进行实体消歧和共指消解,判断知识库中的同名实体与之是否代表不同的含义以及知识库中是否存在其他命名实体与之表示相同的含义;
在确认知识库中对应的正确实体对象之后,将该实体指称项链接到知识库中对应实体。
实体消歧是专门用于解决同名实体产生歧义问题的技术,通过实体消歧,就可以根据当前的语境,准确建立实体链接,实体消歧主要采用聚类法。其实也可以看做基于上下文的分类问题,类似于词性消歧和词义消歧。
共指消解技术主要用于解决多个指称对应同一实体对象的问题。在一次会话中,多个指称可能指向的是同一实体对象。利用共指消解技术,可以将这些指称项关联(合并)到正确的实体对象,由于该问题在信息检索和自然语言处理等领域具有特殊的重要性,吸引了大量的研究努力。共指消解还有一些其他的名字,比如对象对齐、实体匹配和实体同义。
知识合并
在前面的实体链接中,我们已经将实体链接到知识库中对应的正确实体对象那里去了,但需要注意的是,实体链接链接的是我们从半结构化数据和非结构化数据那里通过信息抽取提取出来的数据。
那么除了半结构化数据和非结构化数据以外,我们还有个更方便的数据来源——结构化数据,如外部知识库和关系数据库。
对于这部分结构化数据的处理,就是我们知识合并的内容啦。一般来说知识合并主要分为两种:
合并外部知识库,主要处理数据层和模式层的冲突,合并关系数据库,有RDB2RDF等方法。

回复

使用道具 举报

发表于 2019-10-14 18:32:04 | 显示全部楼层
非常好,顶一下
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|Archiver|手机版|大数据论坛 ( 京ICP备10002193号-4 京公海网安备110108001289号  

GMT+8, 2019-11-19 08:24 , Processed in 0.278680 second(s), 26 queries , Gzip On.

Powered by Discuz! X3.1

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表